Python多线程threading和multiprocessing模块实例解析

 更新时间:2018年01月29日 14:44:14   作者:世界看我我看世界   我要评论
这篇文章主要介绍了Python多线程threading和multiprocessing模块等相关内容,分享了相关代码示例,小编觉得还是挺不错的,这里分享给大家,需要的朋友可以参考下

本文研究的主要是Python多线程threading和multiprocessing模块的相关内容,具体介绍如下。

线程是一个进程的实体,是由表示程序运行状态的寄存器(如程序计数器、栈指针)以及堆栈组成,它是比进程更小的单位。
线程是程序中的一个执行流。一个执行流是由CPU运行程序代码并操作程序的数据所形成的。因此,线程被认为是以CPU为主体的行为。

线程不包含进程地址空间中的代码和数据,线程是计算过程在某一时刻的状态。所以,系统在产生一个线程或各个线程之间切换时,负担要比进程小得多。

线程是一个用户级的实体,线程结构驻留在用户空间中,能够被普通的用户级函数直接访问。

一个线程本身不是程序,它必须运行于一个程序(进程)之中。因此,线程可以定义为一个程序中的单个执行流。

多线程是指一个程序中包含多个执行流,多线程是实现并发的一种有效手段。一个进程在其执行过程中,可以产生多个线程,形成多个执行流。每个执行流即每个线程也有它自身的产生、存在和消亡的过程。

多线程程序设计的含义就是可以将程序任务分成几个并行的子任务。

线程的状态图:

Python中常使用的线程模块

  • thread(低版本使用的),threading
  • Queue
  • multiprocessing

threading

thread模块是Python低版本中使用的,高版本中被threading代替了。threading模块提供了更方便的API来操作线程。

threading.Thread

Thread是threading模块中最重要的类之一,可以使用它来创建线程。创建新的线程有两种方法:

  • 方法一:直接创建threading.Thread类的对象,初始化时将可调用对象作为参数传入。
  • 方法二:通过继承Thread类,重写它的run方法。

Thread类的构造方法:

__init__(group=None, target=None, name=None, args=(), kwargs=None, verbose=None)

参数说明:

group:线程组,目前还没有实现,库引用中提示必须是None。
target:要执行的方法;
name:线程名;
args/kwargs:要传入方法的参数。

Thread类拥有的实例方法:

isAlive():返回线程是否在运行。正在运行指的是启动后,终止前。

getName(name)/setName(name):获取/设置线程名。

isDaemon(bool)/setDaemon(bool):获取/设置是否为守护线程。初始值从创建该线程的线程继承而来,当没有非守护线程仍在运行时,程序将终止。

start():启动线程。

join([timeout]):阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的等待时间timeout(可选参数)。即当前的线程要等调用join()这个方法的线程执行完,或者是达到规定的时间。

直接创建threading.Thread类的对象

实例:

from threading import Thread
import time
def run(a = None, b = None) :
 print a, b 
 time.sleep(1)
t = Thread(target = run, args = ("this is a", "thread"))
#此时线程是新建状态
print t.getName()#获得线程对象名称
print t.isAlive()#判断线程是否还活着。
t.start()#启动线程
t.join()#等待其他线程运行结束

执行结果:

Thread-1
False
this is a thread

注意:

t = Thread(target = run, args = ("this is a", "thread"))

这句只是创建了一个线程,并未执行这个线程,此时线程处于新建状态。

t.start()#启动线程

启动线程,此时线程扔为运行,只是处于准备状态。

自定义函数run(),使我们自己根据我们需求自己定义的,函数名可以随便取,run函数的参数来源于后面的args元组。

通过继承Thread类

实例:

from threading import Thread
import time
class MyThread(Thread) :
 def __init__(self, a) :
  super(MyThread, self).__init__()
  #调用父类的构造方法
  self.a = a
 def run(self) :
  print "sleep :", self.a
  time.sleep(self.a)
t1 = MyThread(2)
t2 = MyThread(4)
t1.start()
t2.start()
t1.join()
t2.join()

执行结果:

由于创建了两个并发执行的线程t1和t2,并发线程的执行时间不定,谁先执行完的时间也不定,所以执行后打印的结果顺序也是不定的。每一次执行都有可能出现不同的结果。

注意:

继承Thread类的新类MyThread构造函数中必须要调用父类的构造方法,这样才能产生父类的构造函数中的参数,才能产生线程所需要的参数。新的类中如果需要别的参数,直接在其构造方法中加即可。

同时,新类中,在重写父类的run方法时,它默认是不带参数的,如果需要给它提供参数,需要在类的构造函数中指定,因为在线程执行的过程中,run方法时线程自己去调用的,不用我们手动调用,所以没法直接给传递参数,只能在构造方法中设定好参数,然后再run方法中调用。

针对join()函数用法的实例:

# encoding: UTF-8
import threading
import time
def context(tJoin):
  print 'in threadContext.'
  tJoin.start()
  # 将阻塞tContext直到threadJoin终止。
  tJoin.join()
  # tJoin终止后继续执行。
  print 'out threadContext.'
def join():
  print 'in threadJoin.'
  time.sleep(1)
  print 'out threadJoin.'
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
tContext.start()

执行结果:

in threadContext.
in threadJoin.
out threadJoin.
out threadContext.

解析:

主程序中这句tJoin = threading.Thread(target=join)执行后,只是创建了一个线程对象tJoin,但并未启动该线程。

tContext = threading.Thread(target=context, args=(tJoin,))
tContext.start()

上面这两句执行后,创建了另一个线程对象tContext并启动该线程(打印in threadContext.),同时将tJoin线程对象作为参数传给context函数,在context函数中,启动了tJoin这个线程,同时该线程又调用了join()函数(tJoin.join()),那tContext线程将等待tJoin这线程执行完成后,才能继续tContext线程后面的,所以先执行join()函数,打印输出下面两句:

in threadJoin.
out threadJoin.

tJoin线程执行结束后,继续执行tContext线程,于是打印输出了out threadContext.,于是就看到我们上面看到的输出结果,并且无论执行多少次,结果都是这个顺序。但如果将context()函数中tJoin.join()这句注释掉,再执行该程序,打印输出的结果顺序就不定了,因为此时这两线程就是并发执行的。

multiprocessing.dummy

Python中线程multiprocessing模块与进程使用的同一模块。使用方法也基本相同,唯一不同的是,from multiprocessing import Pool这样导入的Pool表示的是进程池;
from multiprocessing.dummy import Pool这样导入的Pool表示的是线程池。这样就可以实现线程里面的并发了。

线程池实例:

import time
from multiprocessing.dummy import Pool as ThreadPool
#给线程池取一个别名ThreadPool
def run(fn):
 time.sleep(2)
 print fn
if __name__ == '__main__':
 testFL = [1,2,3,4,5]
 pool = ThreadPool(10)#创建10个容量的线程池并发执行
 pool.map(run, testFL)
 pool.close()
 pool.join()

执行结果:

这里的pool.map()函数,跟进程池的map函数用法一样,也跟内建的map函数一样。

总结

以上就是本文关于Python多线程threading和multiprocessing模块实例解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

  • python对html代码进行escape编码的方法

    python对html代码进行escape编码的方法

    这篇文章主要介绍了python对html代码进行escape编码的方法,涉及Python中escape方法的使用技巧,非常具有实用价值,需要的朋友可以参考下
    2015-05-05
  • Python随机读取文件实现实例

    Python随机读取文件实现实例

    这篇文章主要介绍了Python随机读取文件的相关资料,需要的朋友可以参考下
    2017-05-05
  • Django实现基于类的分页功能

    Django实现基于类的分页功能

    这篇文章主要为大家详细介绍了Django实现基于类的分页功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-10-10
  • Flask框架Flask-Login用法分析

    Flask框架Flask-Login用法分析

    这篇文章主要介绍了Flask框架Flask-Login用法,结合实例形式分析了Flask-Login插件进行登录验证的相关操作技巧与注意事项,需要的朋友可以参考下
    2018-07-07
  • 使用Python通过win32 COM打开Excel并添加Sheet的方法

    使用Python通过win32 COM打开Excel并添加Sheet的方法

    今天小编就为大家分享一篇使用Python通过win32 COM打开Excel并添加Sheet的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • 浅谈python中的数字类型与处理工具

    浅谈python中的数字类型与处理工具

    下面小编就为大家带来一篇浅谈python中的数字类型与处理工具。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • Pandas之排序函数sort_values()的实现

    Pandas之排序函数sort_values()的实现

    这篇文章主要介绍了Pandas之排序函数sort_values()的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • python3实现爬取淘宝美食代码分享

    python3实现爬取淘宝美食代码分享

    本文给大家分享的是如何使用python3来爬取淘宝美食图片标题等信息的方法和代码,有需要的小伙伴可以参考下
    2018-09-09
  • python利用paramiko连接远程服务器执行命令的方法

    python利用paramiko连接远程服务器执行命令的方法

    下面小编就为大家带来一篇python利用paramiko连接远程服务器执行命令的方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • python 文件转成16进制数组的实例

    python 文件转成16进制数组的实例

    今天小编就为大家分享一篇python 文件转成16进制数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07

最新评论