pandas pivot_table() 按日期分多列数据的方法

 更新时间:2018年11月16日 09:11:08   作者:徐三少北   我要评论
今天小编就为大家分享一篇pandas pivot_table() 按日期分多列数据的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

如下所示:

date 20170307 20170308
iphone4 2 0
iphone5 2 1
iphone6 0 1

先生成DF数据。

>>> df = pd.DataFrame.from_dict([['ip4','20170307',1],['ip4','20170307',1],['ip5','20170307',1],['ip5','20170307',1],['ip6','20170308',1],['ip5','20170308',1]])
>>> df.columns=['type','date','num']
>>>df
 type   date num
0 ip4 20170307  1
1 ip4 20170307  1
2 ip5 20170307  1
3 ip5 20170307  1
4 ip6 20170308  1
5 ip5 20170308  1
>>> pd.pivot_table(df,values='num',rows=['type'],cols=['date'],aggfunc=np.sum).fillna(0)

操作一下就是实现结果。

注:这个函数的参数形式在0.13.x版本里有效,其他版本请参考相应文档。

从0.14.0开始,参数形式升级成pd.pivot_table(df,values='num',index=['type'],columns=['date'],aggfunc=np.sum).fillna(0)

以上这篇pandas pivot_table() 按日期分多列数据的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持澳门金沙网上娱乐。

相关文章

最新评论