浅析Python 读取图像文件的性能对比

 更新时间:2019年03月07日 11:43:40   作者:BriFuture''s Blog   我要评论
这篇文章主要介绍了浅析Python 读取图像文件的性能对比,主要介绍了3种性能对比方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

使用 Python 读取一个保存在本地硬盘上的视频文件,视频文件的编码方式是使用的原始的 RGBA 格式写入的,即无压缩的原始视频文件。最开始直接使用 Python 对读取到的文件数据进行处理,然后显示在 Matplotlib 窗口上,后来发现视频播放的速度比同样的处理逻辑的 C++ 代码慢了很多,尝试了不同的方法,最终实现了在 Python 中读取并显示视频文件,帧率能够达到 120 FPS 以上。

读取一帧图片数据并显示在窗口上

最简单的方法是直接在 Python 中读取文件,然后逐像素的分配 RGB 值到窗口中,最开始使用的是 matplotlib 的 pyplot 组件。

一些用到的常量:

FILE_NAME = "I:/video.dat"
WIDTH = 2096
HEIGHT = 150
CHANNELS = 4
PACK_SIZE = WIDTH * HEIGHT * CHANNELS

每帧图片的宽度是 2096 个像素,高度是 150 个像素,CHANNELS 指的是 RGBA 四个通道,因此 PACK_SIZE 的大小就是一副图片占用空间的字节数。

首先需要读取文件。由于视频编码没有任何压缩处理,大概 70s 的视频(每帧约占 1.2M 空间,每秒 60 帧)占用达 4Gb 的空间,所以我们不能直接将整个文件读取到内存中,借助 Python functools 提供的 partial 方法,我们可以每次从文件中读取一小部分数据,将 partial 用 iter 包装起来,变成可迭代的对象,每次读取一帧图片后,使用 next 读取下一帧的数据,接下来先用这个方法将保存在文件中的一帧数据读取显示在窗口中。

with open( file, 'rb') as f:
  e1 = cv.getTickCount()
  records = iter( partial( f.read, PACK_SIZE), b'' ) # 生成一个 iterator
  frame = next( records ) # 读取一帧数据
  img = np.zeros( ( HEIGHT, WIDTH, CHANNELS ), dtype = np.uint8)
  for y in range(0, HEIGHT):
    for x in range( 0, WIDTH ):
      pos = (y * WIDTH + x) * CHANNELS
      for i in range( 0, CHANNELS - 1 ):
        img[y][x][i] = frame[ pos + i ]
      img[y][x][3] = 255
  plt.imshow( img )
  plt.tight_layout()
  plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
  plt.xticks([])
  plt.yticks([])
  e2 = cv.getTickCount()
  elapsed = ( e2 - e1 ) / cv.getTickFrequency()
  print("Time Used: ", elapsed )
  plt.show()

需要说明的是,在保存文件时第 4 个通道保存的是透明度,因此值为 0,但在 matplotlib (包括 opencv)的窗口中显示时第 4 个通道保存的一般是不透明度。我将第 4 个通道直接赋值成 255,以便能够正常显示图片。

这样就可以在我们的窗口中显示一张图片了,不过由于图片的宽长比不协调,使用 matplotlib 绘制出来的窗口必须要缩放到很大才可以让图片显示的比较清楚。

为了方便稍后的性能比较,这里统一使用 opencv 提供的 getTickCount 方法测量用时。可以从控制台中看到显示一张图片,从读取文件到最终显示大概要用 1.21s 的时间。如果我们只测量三层嵌套循环的用时,可以发现有 0.8s 的时间都浪费在循环上了。


读取并显示一帧图片用时 1.21s


在处理循环上用时 0.8s

约百万级别的循环处理,同样的代码放在 C++ 里面性能完全没有问题,在 Python 中执行起来就不一样了。在 Python 中这样的处理速度最多就 1.2 fps。我们暂时不考虑其他方法进行优化,而是将多帧图片动态的显示在窗口上,达到播放视频的效果。

连续读取图片并显示

这时我们继续读取文件并显示在窗口上,为了能够动态的显示图片,我们可以使用 matplotlib.animation 动态显示图片,之前的程序需要进行相应的改动:

fig = plt.figure()
ax1 = fig.add_subplot(1, 1, 1)
try:
  img = np.zeros( ( HEIGHT, WIDTH, CHANNELS ), dtype = np.uint8)
  f = open( FILE_NAME, 'rb' )
  records = iter( partial( f.read, PACK_SIZE ), b'' )
  def animateFromData(i):
    e1 = cv.getTickCount()
    frame = next( records ) # drop a line data
    for y in range( 0, HEIGHT ):
      for x in range( 0, WIDTH ):
        pos = (y * WIDTH + x) * CHANNELS
        for i in range( 0, CHANNELS - 1 ):
          img[y][x][i] = frame[ pos + i]
        img[y][x][3] = 255
    ax1.clear()
    ax1.imshow( img )
    e2 = cv.getTickCount()
    elapsed = ( e2 - e1 ) / cv.getTickFrequency()
    print( "FPS: %.2f, Used time: %.3f" % (1 / elapsed, elapsed ))
  a = animation.FuncAnimation( fig, animateFromData, interval=30 ) # 这里不要省略掉 a = 这个赋值操作
  plt.tight_layout()
  plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
  plt.xticks([])
  plt.yticks([])
  plt.show()
except StopIteration:
  pass
finally:
  f.close()

和第 1 部分稍有不同的是,我们显示每帧图片的代码是在 animateFromData 函数中执行的,使用 matplotlib.animation.FuncAnimation 函数循环读取每帧数据(给这个函数传递的 interval = 30 这个没有作用,因为处理速度跟不上)。另外值得注意的是不要省略掉 a = animation.FuncAnimation( fig, animateFromData, interval=30 ) 这一行的赋值操作,虽然不太清楚原理,但是当我把 a = 删掉的时候,程序莫名的无法正常工作了。

控制台中显示的处理速度:

由于对 matplotlib 的了解不多,最开始我以为是 matplotlib 显示图像过慢导致了帧率上不去,打印出代码的用时后发现不是 matplotlib 的问题。因此我也使用了 PyQt5 对图像进行显示,结果依然是 1~2 帧的处理速度。因为只是换用了 Qt 的界面进行显示,逻辑处理的代码依然沿用的 matplotlib.animation 提供的方法,所以并没有本质上的区别。这段用 Qt 显示图片的代码来自于 github matplotlib issue,我对其进行了一些适配。

使用 Numpy 的数组处理 api

我们知道,显示图片这么慢的原因就是在于 Python 处理 2096 * 150 这个两层循环占用了大量时间。接下来我们换用一种 numpyreshape 方法将文件中的像素数据读取到内存中。注意 reshape 方法接收一个 ndarray 对象。我这种每帧数据创造一个 ndarray 数组的方法可能会存在内存泄漏的风险,实际上可以调用一个 ndarray 数组对象的 reshape 方法。这里不再深究。

重新定义一个用于动态显示图片的函数 optAnimateFromData,将其作为参数传递个 FuncAnimation

def optAnimateFromData(i):
  e1 = cv.getTickCount()
  frame = next( records ) # one image data
  img = np.reshape( np.array( list( frame ), dtype = np.uint8 ), ( HEIGHT, WIDTH, CHANNELS ) )
  img[ : , : , 3] = 255
  ax1.clear()
  ax1.imshow( img )
  e2 = cv.getTickCount()
  elapsed = ( e2 - e1 ) / cv.getTickFrequency()
  print( "FPS: %.2f, Used time: %.3f" % (1 / elapsed, elapsed ))
a = animation.FuncAnimation( fig, optAnimateFromData, interval=30 )

效果如下,可以看到使用 numpyreshape 方法后,处理用时大幅减少,帧率可以达到 8~9 帧。然而经过优化后的处理速度仍然是比较慢的:


优化过的代码执行结果

使用 Numpy 提供的 memmap

在用 Python 进行机器学习的过程中,发现如果完全使用 Python 的话,很多运算量大的程序也是可以跑的起来的,所以我确信可以用 Python 解决我的这个问题。在我不懈努力下找到 Numpy 提供的 memmap api,这个 API 以数组的方式建立硬盘文件到内存的映射,使用这个 API 后程序就简单一些了:

cv.namedWindow("file")
count = 0
start = time.time()
try:
  number = 1
  while True:
    e1 = cv.getTickCount()
    img = np.memmap(filename=FILE_NAME, dtype=np.uint8, shape=SHAPE, mode="r+", offset=count )
    count += PACK_SIZE
    cv.imshow( "file", img )
    e2 = cv.getTickCount()
    elapsed = ( e2 - e1 ) / cv.getTickFrequency()
    print("FPS: %.2f Used time: %.3f" % (number / elapsed, elapsed ))
    key = cv.waitKey(20)
    if key == 27: # exit on ESC
      break
except StopIteration:
  pass
finally:
  end = time.time()
  print( 'File Data read: {:.2f}Gb'.format( count / 1024 / 1024 / 1024), ' time used: {:.2f}s'.format( end - start ) )
  cv.destroyAllWindows()

将 memmap 读取到的数据 img 直接显示在窗口中 cv.imshow( "file", img),每一帧打印出显示该帧所用的时间,最后显示总的时间和读取到的数据大小:


执行效率最高的结果

读取速度非常快,每帧用时只需几毫秒。这样的处理速度完全可以满足 60FPS 的需求。

总结

Python 语言写程序非常方便,但是原生的 Python 代码执行效率确实不如 C++,当然了,比 JS 还是要快一些。使用 Python 开发一些性能要求高的程序时,要么使用 Numpy 这样的库,要么自己编写一个 C 语言库供 Python 调用。在实验过程中,我还使用 Flask 读取文件后以流的形式发送的浏览器,让浏览器中的 JS 文件进行显示,不过同样存在着很严重的性能问题和内存泄漏问题。这个过程留到之后再讲。

本文中的相应代码可以在 github 上查看。

Reference

functools

partial

opencv

matplotlib animation

numpy

numpy reshape

memmap

matplotlib issue on github

C 语言扩展

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持澳门金沙网上娱乐。

相关文章

  • python 限制函数执行时间,自己实现timeout的实例

    python 限制函数执行时间,自己实现timeout的实例

    今天小编就为大家分享一篇python 限制函数执行时间,自己实现timeout的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python openvc 裁剪、剪切图片 提取图片的行和列

    python openvc 裁剪、剪切图片 提取图片的行和列

    这篇文章主要介绍了python openvc 裁剪、剪切图片 提取图片的行和列,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09
  • Python读取图片属性信息的实现方法

    Python读取图片属性信息的实现方法

    这篇文章介绍了利用Python读取图片属性信息的方法,读取的内容包括GPS 信息、图片分辨率、图片像素、设备商、拍摄设备等,有需要的朋友们可以参考借鉴。
    2016-09-09
  • matplotlib subplots 设置总图的标题方法

    matplotlib subplots 设置总图的标题方法

    今天小编就为大家分享一篇matplotlib subplots 设置总图的标题方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python多维数组的行数和列数实例

    python多维数组的行数和列数实例

    今天小编就为大家分享一篇python多维数组的行数和列数实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • Python中判断输入是否为数字的实现代码

    Python中判断输入是否为数字的实现代码

    这篇文章主要介绍了Python中判断输入是否为数字的实现代码,需要的朋友可以参考下
    2018-05-05
  • 详解Django框架中用户的登录和退出的实现

    详解Django框架中用户的登录和退出的实现

    这篇文章主要介绍了详解Django框架中用户的登录和退出的实现,Django是重多Python人气框架中最为知名的一个,需要的朋友可以参考下
    2015-07-07
  • python进程管理工具supervisor的安装与使用教程

    python进程管理工具supervisor的安装与使用教程

    supervisor是用python写的一个进程管理工具,用来启动,重启,关闭进程。下面这篇文章主要给大家介绍了关于python实现的进程管理工具supervisor的安装与使用的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-09-09
  • win10 64bit下python NLTK安装教程

    win10 64bit下python NLTK安装教程

    这篇文章主要为大家详细介绍了win10 64bit下python NLTK安装教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • python tkinter组件使用详解

    python tkinter组件使用详解

    这篇文章主要介绍了python tkinter组件使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09

最新评论