10种检测Python程序运行时间、CPU和内存占用的方法

 更新时间:2015年04月01日 10:41:53   作者:Marina Mele   我要评论

这篇文章主要介绍了10种检测Python程序运行时间、CPU和内存占用的方法,包括利用Python装饰器或是外部的Unix Shell命令等,需要的朋友可以参考下

在运行复杂的Python程序时,执行时间会很长,这时也许想提高程序的执行效率。但该怎么做呢?

首先,要有个工具能够检测代码中的瓶颈,例如,找到哪一部分执行时间比较长。接着,就针对这一部分进行优化。

同时,还需要控制内存和CPU的使用,这样可以在另一方面优化代码。

因此,在这篇文章中我将介绍7个不同的Python工具,来检查代码中函数的执行时间以及内存和CPU的使用。
1. 使用装饰器来衡量函数执行时间

有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果:
 

import time
from functools import wraps
def fn_timer(function):
  @wraps(function)
  def function_timer(*args, **kwargs):
    t0 = time.time()
    result = function(*args, **kwargs)
    t1 = time.time()
    print ("Total time running %s: %s seconds" %
        (function.func_name, str(t1-t0))
        )
    return result
  return function_timer

接着,将这个装饰器添加到需要测量的函数之前,如下所示:
 

@fn_timer
def myfunction(...):
...

例如,这里检测一个函数排序含有200万个随机数字的数组所需的时间:
 

@fn_timer
def random_sort(n):
  return sorted([random.random() for i in range(n)])
if __name__ == "__main__":
  random_sort(2000000)

执行脚本时,会看到下面的结果:
 

Total time running random_sort: 1.41124916077 seconds

2. 使用timeit模块

另一种方法是使用timeit模块,用来计算平均时间消耗。

执行下面的脚本可以运行该模块。

python -m timeit -n 4 -r 5 -s "import timing_functions" "timing_functions.random_sort(2000000)"

这里的timing_functions是Python脚本文件名称。

在输出的末尾,可以看到以下结果:
 

4 loops, best of 5: 2.08 sec per loop

这表示测试了4次,平均每次测试重复5次,最好的测试结果是2.08秒。

如果不指定测试或重复次数,默认值为10次测试,每次重复5次。
3. 使用Unix系统中的time命令

然而,装饰器和timeit都是基于Python的。在外部环境测试Python时,unix time实用工具就非常有用。

运行time实用工具:
 

$ time -p python timing_functions.py

输出结果为:
 

Total time running random_sort: 1.3931210041 seconds
real 1.49
user 1.40
sys 0.08

第一行来自预定义的装饰器,其他三行为:

  •     real表示的是执行脚本的总时间
  •     user表示的是执行脚本消耗的CPU时间。
  •     sys表示的是执行内核函数消耗的时间。

注意:根据维基百科的定义,内核是一个计算机程序,用来管理软件的输入输出,并将其翻译成CPU和其他计算机中的电子设备能够执行的数据处理指令。

因此,Real执行时间和User+Sys执行时间的差就是消耗在输入/输出和系统执行其他任务时消耗的时间。
4. 使用cProfile模块

如果想知道每个函数和方法消耗了多少时间,以及这些函数被调用了多少次,可以使用cProfile模块。
 

$ python -m cProfile -s cumulative timing_functions.py

现在可以看到代码中函数的详细描述,其中含有每个函数调用的次数,由于使用了-s选项(累加),最终结果会根据每个函数的累计执行时间排序。

201541103516157.jpg (690×654)

读者会发现执行脚本所需的总时间比以前要多。这是由于测量每个函数的执行时间这个操作本身也是需要时间。
5. 使用line_profiler模块

line_profiler模块可以给出执行每行代码所需占用的CPU时间。

首先,安装该模块:
 

$ pip install line_profiler

接着,需要指定用@profile检测哪个函数(不需要在代码中用import导入模块):
 

@profile
def random_sort2(n):
  l = [random.random() for i in range(n)]
  l.sort()
  return l
if __name__ == "__main__":
  random_sort2(2000000)

最好,可以通过下面的命令获得关于random_sort2函数的逐行描述。
 

$ kernprof -l -v timing_functions.py

其中-l表示逐行解释,-v表示表示输出详细结果。通过这种方法,我们看到构建数组消耗了44%的计算时间,而sort()方法消耗了剩余的56%的时间。

201541103623876.jpg (690×208)

同样,由于需要检测执行时间,脚本的执行时间更长了。
6. 使用memory_profiler模块

memory_profiler模块用来基于逐行测量代码的内存使用。使用这个模块会让代码运行的更慢。

安装方法如下:

 pip install memory_profiler

另外,建议安装psutil包,这样memory_profile会运行的快一点:
 

$ pip install psutil

与line_profiler相似,使用@profile装饰器来标识需要追踪的函数。接着,输入:
 

$ python -m memory_profiler timing_functions.py

脚本的执行时间比以前长1或2秒。如果没有安装psutil包,也许会更长。

201541103657211.jpg (690×145)

从结果可以看出,内存使用是以MiB为单位衡量的,表示的mebibyte(1MiB = 1.05MB)。
7. 使用guppy包

最后,通过这个包可以知道在代码执行的每个阶段中,每种类型(str、tuple、dict等)分别创建了多少对象。

安装方法如下:
 

$ pip install guppy

接着,将其添加到代码中:
 

from guppy import hpy
def random_sort3(n):
  hp = hpy()
  print "Heap at the beginning of the functionn", hp.heap()
  l = [random.random() for i in range(n)]
  l.sort()
  print "Heap at the end of the functionn", hp.heap()
  return l
if __name__ == "__main__":
  random_sort3(2000000)

运行代码:
 

$ python timing_functions.py

可以看到输出结果为:

201541103732081.jpg (688×533)

通过在代码中将heap()放置在不同的位置,可以了解到脚本中的对象创建和删除操作的流程。

如果想学习更多关于Python代码速度优化方面的知识,我建议你去读这本书《High Performance Python: Practical Performant Programming for Humans, september 2014.》

希望这篇文章能偶帮到你!^_^

相关文章

  • python3 enum模块的应用实例详解

    python3 enum模块的应用实例详解

    这篇文章主要介绍了python3 enum模块的应用 ,文中提到了字典类型的缺点及特点,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • 给Python的Django框架下搭建的BLOG添加RSS功能的教程

    给Python的Django框架下搭建的BLOG添加RSS功能的教程

    这篇文章主要介绍了给Python的Django框架下搭建的BLOG添加RSS功能的教程,示例代码非常简单,需要的朋友可以参考下
    2015-04-04
  • Python使用修饰器执行函数的参数检查功能示例

    Python使用修饰器执行函数的参数检查功能示例

    这篇文章主要介绍了Python使用修饰器执行函数的参数检查功能,结合具体实例形式分析了Python实现修饰器针对函数参数检查的原理、步骤与相关操作技巧,需要的朋友可以参考下
    2017-09-09
  • Python的组合模式与责任链模式编程示例

    Python的组合模式与责任链模式编程示例

    这篇文章主要介绍了Python的组合模式与责任链模式编程示例,组合模式与责任链模式都属于Python的设计模式,需要的朋友可以参考下
    2016-02-02
  • Python中的TCP socket写法示例

    Python中的TCP socket写法示例

    最近在学习脚本语言python,所以下面这篇文章主要给大家介绍了关于Python中TCP socket写法的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或工作具有一定的参考学习价值,需要的朋友们一起来看看吧
    2018-05-05
  • Python脚本实现Web漏洞扫描工具

    Python脚本实现Web漏洞扫描工具

    这是去年毕设做的一个Web漏洞扫描小工具,主要针对简单的SQL注入漏洞、SQL盲注和XSS漏洞。下文给大家介绍了使用说明和源代码,一起看看吧
    2016-10-10
  • 用python打印菱形的实操方法和代码

    用python打印菱形的实操方法和代码

    在本篇文章里小编给大家分享了关于用python打印菱形的实操方法和代码,对此有需要的朋友们可以学习下。
    2019-06-06
  • Flask框架Jinjia模板常用语法总结

    Flask框架Jinjia模板常用语法总结

    这篇文章主要介绍了Flask框架Jinjia模板常用语法,结合实例形式总结分析了Jinjia模板的变量、赋值、流程控制、函数、块、宏等基本使用方法,需要的朋友可以参考下
    2018-07-07
  • python面试题Python2.x和Python3.x的区别

    python面试题Python2.x和Python3.x的区别

    这篇文章主要介绍了python面试题Python2.x和Python3.x的区别 ,在面试中也经常会问到,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • 对numpy中的where方法嵌套使用详解

    对numpy中的where方法嵌套使用详解

    今天小编就为大家分享一篇对numpy中的where方法嵌套使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10

最新评论